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A B S T R A C T

Alzheimer’s Disease impairs the memory and cognitive function of patients, and early intervention can
effectively mitigate its deterioration. Most existing methods for Alzheimer’s analysis rely solely on medical
images, ignoring the impact of some clinical indicators associated with the disease. Furthermore, these
methods have thus far failed to identify the specific brain regions affected by the disease. To solve these
limitations, we propose an attention-based multi-task Graph Convolutional Network (GNN) for Alzheimer’s
disease analysis. Specifically, we first segment brain regions based on tissue types and randomly assign a
learnable weight for each region. Then, we introduce multi-task attention units to jointly capture the shared
feature information between brain regions and across different tasks, achieving cross-interactions between
medical images and clinical indicators. Finally, we design task-specific layers for each task, allowing the model
to predict Alzheimer’s Disease status and clinical scores. Experimental results on four Alzheimer’s Disease
datasets show that our approach not only outperforms the state-of-the-art in terms of accuracy, but also
explicitly identifies brain regions associated with the disease as well as provides reliable clinical scores.
1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that can
significantly affect the quality of life of older individuals [1,2]. Early
intervention proves to be an effective way of preventing its deteri-
oration [3–5]. The commonly used method is to predict the disease
based on Magnetic Resonance Imaging (MRI) for the purpose of early
intervention [6].

In recent years, MRI-based AD diagnostic techniques have been
widely used in real-world medical diagnosis, but most of them treat AD
diagnosis as a binary classification task and subsequently design vari-
ous models to enhance its performance [7]. Representative methods,
e.g., Graph-Neural-Networks-based (GCNs-based) methods [8], predict
AD status by considering the structure and sample features between
samples. However, GCNs-based methods can only make binary pre-
dictions of AD diagnosis, lacking corresponding explanations for their
predictions, i.e., such methods rely solely on brain regions in MRI,
potentially leading to real-world diagnostic errors, such as a one-sided
diagnosis or even a completely incorrect diagnosis [9]. To improve
the reliability of AD diagnosis, it is necessary to provide explanations
for the results of AD diagnosis or other AD-related tasks, such as the
Alzheimer’s Disease Assessment Scale Cognitive subscale (ADAS-Cog)
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and Mini-Mental State Examination (MMSE) [10,11]. ADAS-Cog and
MMSE are two common clinical indicators that are often used to assist
MRI for AD diagnosis.

In real-world medical diagnostic research, the acquisition of ADAS-
Cog and MMSE is time-consuming and challenging due to the need
for collaboration between medical professionals and patients. They are
often affected by various factors such as the patient’s education, cul-
tural background, emotional state, and etc. [12]. The common method
is to first design a regression task to analyze MRI, yielding these two
metrics [13], and then combine them with the previous MRI-based bi-
nary classification results for AD diagnosis. However, this method often
ignores the correlation between these two tasks, potentially leading to
the failure of the overall optimal of AD diagnosis.

To address these two challenges, we propose the Attention-based
Multi-Task Interpretable Graph Convolutional Network (AMTI-GCN).
Specifically, we first combine the weight matrix and 𝐿2,1 norm sparsity
technique to assign the weights of the corresponding brain regions of
MRI for selecting the task-related brain regions. Then, we use the atten-
tion mechanism to learn the shared features between tasks by finding
the optimal ratio of feature information sharing between tasks. Finally,
we feed this shared feature into the task-specific multi-task prediction
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layer to achieve the binary prediction of AD and its corresponding
ADAS and MMSE. Since these two metrics are explicit and verifiable,
they can be used as our interpretation of AD prediction.

We conclude the main contributions of our paper as follows:

• We propose a multi-task module for AD and the corresponding
clinical indicators (ADAS-Cog, MMSE) prediction, making AD
predictions more explainable.

• We designed an attention-based method to better leverage the
correlation information between multiple tasks.

• We conduct comprehensive experiments on four AD datasets and
demonstrate that our proposed method outperforms the SOTA in
terms of accuracy.

2. Related work

Interpretability research. In medical applications, the interpretability of
a model is crucial in terms of whether it earns the trust of physicians
and patients. Various techniques have been explored to improve the
transparency of models in AD diagnosis. For example, Oh and Yoon
et al. [14] utilize the generation of a counterfactual map behind a
diagnostic model to localize hypothetical abnormalities within a normal
brain image, thereby guiding the diagnosis of the next enhanced diag-
nostic model. This approach not only improves diagnostic accuracy, but
also provides clinicians with visual insights into the model’s decision-
making process. Meanwhile, Chen et al. [15] utilized forward selection
and aspect consolidation to output accurate brain regions associated
with an AD diagnosis, thus helping to identify key factors leading to an
AD diagnosis.

Multi-task research. Multi-task learning has been used to predict mul-
tiple relevant clinical outcomes simultaneously [16], providing a way
to capture shared information and improve overall prediction perfor-
mance. Recent studies have been conducted in AD diagnosis using a
multi-task framework to jointly predict disease progression and cog-
nitive scores, showing promising results. For example, Liu et al. [17]
proposed a deep multi-task multi-channel learning (DM2L) framework
to simultaneously output AD classification and clinical score regression
results with improved prediction accuracy compared to a single-task
model. In addition, Liang et al. [18] proposed a multi-task learning
framework that adaptively estimates missing values and predicts future
progression of the condition over time based on subjects’ historical
measurements.

3. Method

In this section, we will introduce the proposed network called the
Attention based Multi-task Interpretable Graph Convolutional Network
(AMTI-GCN). As shown in Fig. 1, AMTI-GCN includes three mod-
ules, which are called the Interpretation module, the Feature sharing
module, and the Task-specific module.

Remarkably, throughout the entire paper, we use boldface upper-
case letters, boldface lowercase letters, and regular italic letters to
represent matrices, vectors, and scalars, respectively. To be specific, in
this paper, 𝐗 =

[

𝐱1, 𝐱2,… , 𝐱𝑛
]

∈ R𝑛×𝑑 denotes the feature matrix of 𝑛
amples, 𝐱𝑖,𝑘 represents the 𝑖th sample of the 𝑘th task, and 𝑥𝑖𝑗,𝑘 is the
th feature of the 𝑖th sample of the 𝑘th task.

.1. Interpretation module

We select the brain regions significant to the specific task during
raining by generating the feature weight matrix and assigning the
eights to the corresponding features of the samples. The concrete
ethod is divided into the following three steps:

Firstly, to give different features weights corresponding to their
mportance to the task, we initialize a weight matrix. In particular, we
onsider the matrix 𝐖 =

[

𝐰 ,𝐰 ,… ,𝐰
]

∈ R𝑛×𝑑 , 𝑘 ∈ 1, 2,… , 𝑚
2

𝑘 1,𝑘 2,𝑘 𝑑,𝑘 { }
as the weight matrix of the 𝑘th task, which is a trainable matrix
initialized randomly.

Secondly, since redundant features can negatively affect the final
classification and regression results, we propose the feature sparsity
approach to reduce the redundant features and obtain the important
brain regions related to the specific task [19,20]. To sparse the features,
we aim to make the corresponding weight 𝐰𝑖,𝑘 to be smaller or even
zero when the 𝑖th feature is not important. So we utilize 𝐿2,1-norm
which allows the feature weights of each row to be as small as possible.
Meanwhile, the mathematical expression of 𝐿2,1 is ||𝐖𝑘 ||2,1.

Thirdly, we need to assign the weights after sparseness in the
second step to the corresponding features. Specifically, we perform the
Hadamard product operation on the sparse weight matrix 𝐖𝑘 and the
eature matrix 𝐗, which can be expressed as follows:
(0)
𝑘 = 𝐖𝑘 ⊙ 𝐗, (1)

here ⊙ represents Hadamard product, i.e., 𝐖𝑘 and 𝐗 are multiplied
element by element, 𝐗 ∈ R𝑛×𝑑 is the original feature matrix, all tasks
are the same. By the Eq. (1) we can make each feature of each node
on each task get the corresponding weight. Then, we feed the weighted
feature matrix 𝐗(0)

𝑘 into the feature sharing module to learn information
from other tasks that are beneficial for its own training.

3.2. Feature sharing module

We employ an attention mechanism to automatically find the op-
timal information sharing ratio during the training process and ev-
ery task can use the attention mechanism to absorb the most useful
information from other tasks.

For subsequent attention to better share feature information, we
feed 𝐗(0)

𝑘 and adjacency matrix 𝐀 into the graph convolution layer to
learn both feature and structure information of the node [21,22]. The
specific formula is as follows:

𝐗(𝓁+1)
𝑘 = 𝜎(𝐃̂−1∕2𝐀̂𝐃̂−1∕2𝐗(𝓁)

𝑘 Θ(𝓁)
𝑘 ), (2)

here 𝓁 ∈ {0,… , 𝐿 − 1}, 𝐗(𝓁+1)
𝑘 is the output after graph convolution,

̂ = 𝐀+𝐈𝑛, 𝐃̂ = 𝑑𝑖𝑎𝑔(𝑑1,… , 𝑑𝑛) which is a diagonal matrix and in which
𝑖̂ =

∑𝑛
𝑗=1(𝐴̂𝑖𝑗 ), Θ𝓁

𝑘 ∈ R𝑑𝓁×𝑑𝓁+1 is a trainable parameter matrix of the
-th layer of the 𝑘th task, and 𝜎(⋅) represents an activation function.
fter the 𝐿 layers graph convolution, we obtain the embedded feature
atrix 𝐗(𝐿)

𝑘 .
Then we design an attention unit to share information between

asks, as shown in Fig. 2. The input of the attention unit is the embed-
ed feature 𝐗(𝐿)

𝑘 after 𝐿 graph convolution layers. The output of the
ttention unit is the shared representation 𝐗̃(𝐿)

𝑘 which is a linear com-
ination of embedded feature matrices for 𝑚 tasks. The attention-based
eature sharing process can be described by the following equation:

𝑥̃(𝑡𝐿)𝑖𝑗,1

𝑥̃(𝑡𝐿)𝑖𝑗,2

⋮

𝑥̃(𝑡𝐿)𝑖𝑗,𝑚

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛼(𝑡)11 𝛼(𝑡)12 ⋯ 𝛼(𝑡)1𝑚
𝛼(𝑡)21 𝛼(𝑡)22 ⋯ 𝛼(𝑡)2𝑚
⋮ ⋮ ⋮
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, (3)

here 𝑥(𝑡𝐿)𝑖𝑗,𝑘 is the 𝑗th feature of the 𝑖th sample for the 𝑘th task after 𝑡
imes feature sharing through attention unit, 𝑡 ∈ {1, 2,… , 𝑇 }. 𝛼(𝑡)𝑖𝑗 , 𝑖, 𝑗 ∈
1, 2,… , 𝑚} are trainable parameters, denoting the ratio of information
hat the 𝑖th task obtains from the 𝑗th task and 𝛼(𝑡)𝑖𝑗 satisfy the following
quation:
𝑚

𝑗=1
𝛼(𝑡)𝑖𝑗 = 1, 𝑖 ∈ {1, 2,… , 𝑚} . (4)

he larger the value of 𝛼(𝑡)𝑖𝑗 means the higher the degree of sharing
etween task 𝑖th and task 𝑗th. If 𝛼(𝑡)𝑖𝑗 = 0, it means the 𝑖th task does
ot absorb information from the 𝑗th task.
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Fig. 1. The framework of our proposed AMTI-GCN. It consists of three modules: an interpretation module, a feature sharing module, and a task-specific module. The interpretation
module aims to obtain sparse weight matrices (mask) 𝑊 that indicate the importance of different features. The feature sharing module employs two attention units to enable
feature exchange across different tasks. The task-specific module utilizes task-specific features to perform each task. These three modules are jointly trained in an end-to-end manner
to achieve AD diagnosis results.
Fig. 2. Attention Unit: sharing feature information.

We place the attention unit after the graph convolution network. To
be specific, after every feature extraction by graph convolution, we feed
the embedded matrices into the attention unit to perform information
interaction. After 𝑇 × 𝐿 layers of graph convolution and 𝑇 times of
sharing, we feed the obtained features into the task-specific module.

3.3. Task specific module

After feature sharing module, we obtain the feature matrix 𝐗(𝑇𝐿) =
[

𝐗(𝑇𝐿)
0 ,𝐗(𝑇𝐿)

1 ,… ,𝐗(𝑇𝐿)
𝑚

]

for 𝑚 tasks.
If the 𝑘th task is the classification task, we input the embedded

feature 𝐗(𝑇𝐿)
𝑘 ∈ R𝑛×𝑐 into a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 layer to obtain the probability 𝑧̂𝑖𝑗,𝑘

hat the 𝑖th sample belongs to the 𝑗th class. The specific expression is
s follows:

̂𝑖𝑗,𝑘 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥̃(𝑇𝐿)𝑖𝑗,𝑘 ) =
𝑒𝑥𝑝(𝑥̃𝑇𝐿𝑖𝑗,𝑘)

∑𝑐
𝑗=1 𝑒𝑥𝑝(𝑥̃

(𝑇𝐿)
𝑖𝑗,𝑘 )

(5)

For obtaining the corresponding probabilities of each sample’s cate-
gories, we take the index of each sample’s category with the highest
probability as the prediction result 𝑦̂𝑖,𝑘. Then we can get the final
prediction label 𝐲̂ of all samples.
3

𝑘

𝐗(𝑇𝐿)
𝑘 ∈ R𝑛×𝑑𝑇 for the task. Then, we input the matrix into the multi-

layer perceptron (MLP) to output the prediction 𝐲̂𝑘. The mathematical
formula is expressed as follows:

𝐲𝑘 = 𝐌𝐋𝐏𝑘

(

𝐗̃(𝑇𝐿)
𝑘

)

, (6)

3.4. Loss function

First, we design a loss function for each task 𝑘 with the following
mathematical expression:

𝐿𝑘 = 𝐿𝑡𝑎𝑠𝑘,𝑘 + 𝛽𝑘𝐿𝑠𝑝𝑎𝑟𝑠𝑒,𝑘 (7)

where 𝐿𝑡𝑎𝑠𝑘,𝑘 denotes the task-specific loss function and 𝐿𝑠𝑝𝑎𝑟𝑠𝑒,𝑘 de-
notes the constraint function used to sparse the features of the specific
task. 𝛽𝑘 is a tuning parameter to balance the magnitude of task loss and
sparse learning.

For 𝐿𝑡𝑎𝑠𝑘,𝑘, if the 𝑘th task is a classification task, we use cross en-
tropy to calculate its task-specific loss for cross entropy measures how
well the model predicts the true labels of the data. The mathematical
formula is expressed as follows:

𝐿𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑐𝑎𝑡𝑖𝑜𝑛,𝑘 = −
𝑛
∑

𝑖=1
𝑦𝑖,𝑘 ln 𝑦̂𝑖,𝑘 (8)

where 𝑦𝑖,𝑘 denotes the real label of the 𝑖th node and 𝑦̂𝑖,𝑘 represents the
prediction label of the 𝑖th node.

If the 𝑘th task is a regression task, we utilize mean square error
which measures how well the model fits the data to obtain the task-
specific loss of the 𝑘th task. The specific formula is expressed as follows:

𝐿𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛,𝑘 =
𝑛
∑

𝑖=1

(

𝑦𝑖,𝑘 − 𝑦̂𝑖,𝑘
)2 (9)

where 𝑦𝑖,𝑘 denotes the real clinical score of the 𝑖th sample and 𝑦̂𝑖,𝑘
represents the prediction score of the 𝑖th sample.

What is more, since we use the 𝐿2,1 norm to sparse the weight
matrix for giving the insignificant features smaller weights which are
even close to zero, the constraint function used to sparse the features
of the specific task can be expressed as follows:

𝐿𝑠𝑝𝑎𝑟𝑠𝑒,𝑘 = ‖

‖

𝐖𝑘
‖

‖2,1 =
𝑛
∑

√

√

√

√

√

𝑑
∑

𝑤2
𝑖𝑗,𝑘 (10)
𝑖=1 𝑗=1
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Table 1
The classification and regression performance of nine methods on AD-NC and AD-MCI datasets. We bold the best result in each setting.

AD-NC AD-MCI

Method ACC SEN SPE AUC ADAS-Cog MMSE ACC SEN SPE AUC ADAS-Cog MMSE

CC RMSE CC RMSE CC RMSE CC RMSE

RF 78.5 81.6 72.6 77.1 0.525 5.101 0.568 2.217 68.5 70.1 66.4 68.4 0.389 4.782 0.433 2.593
XGBoost 77.6 79.5 74.7 76.9 0.481 5.337 0.504 2.329 67.4 69.9 65.7 67.3 0.392 4.778 0.419 2.685

GCN 82.8 81.4 83.8 82.4 0.571 4.962 0.507 2.319 68.9 70.5 67.8 68.7 0.406 4.468 0.452 2.549
GAT 83.6 82.2 84.1 83.5 0.565 5.023 0.516 2.305 70.3 71.2 68.9 70.2 0.476 4.446 0.476 2.332
IDGCN 84.0 82.4 84.5 83.5 0.588 4.917 0.533 2.290 71.8 72.5 70.3 71.4 0.426 4.598 0.458 2.543
ST 84.8 82.7 86.7 83.2 0.596 4.857 0.541 2.276 71.2 73.7 67.9 70.8 0.440 4.532 0.466 2.468
HPS 84.6 83.8 85.3 84.5 0.628 4.709 0.623 2.009 72.5 73.5 70.3 72.1 0.471 4.460 0.471 2.382
CSN 85.3 83.6 86.1 84.7 0.637 4.641 0.665 1.926 73.0 75.3 71.3 73.2 0.495 4.242 0.512 1.926
AMTI-GCN 86.2 85.4 87.0 85.9 0.649 4.513 0.681 1.889 74.2 76.6 72.4 73.8 0.512 4.015 0.547 1.886
,

In summary, with 𝐿𝑡𝑎𝑠𝑘,𝑘 and 𝐿𝑠𝑝𝑎𝑟𝑠𝑒,𝑘, we can calculate 𝐿𝑘. Because
the significance of different tasks varies, we cannot directly add up their
losses. Hence, the final loss 𝐿 of our model AMTI-GCN can be expressed
as a weighted sum of all task losses, i.e.,

𝐿𝑡𝑜𝑡𝑎𝑙 =
3
∑

𝑘=1
𝜆𝑘𝐿𝑘 (11)

According to Eqs. (7) and (11), there are six hyperparameters that
need to be adjusted manually. Adjusting six hyperparameters is time-
consuming. Therefore, we follow the idea of paper [23] by utilizing
probability modeling to automatically learn the best weights for each
task so as to reduce the time cost caused by hyperparameters. So we
can simplify the loss function as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 =
1
𝜎21

𝐿1 +
1

2𝜎22
𝐿2 +

1
2𝜎23

𝐿3 (12)

here 𝜎1, 𝜎2, and 𝜎3 are the noise scalars, respectively. They can
e automatically adjusted during training. Therefore, we just need to
anually adjust 𝛽1, 𝛽2, 𝛽3 in Eq. (7).

By minimizing Eq. (12), we can obtain the optimal parameters
𝑡
𝑘 =

{

Θ𝑡,0
𝑘 ,Θ𝑡,1

𝑘 ,… ,Θ𝑡,𝐿
𝑘

}

of the graph convolution and the optimal
arameters 𝑊𝑘 of the weight matrix.

For clarity, the details of the AMTI-GCN are shown in Algorithm 1,
here the EPOCHS means the number of training.

Algorithm 1 AMTI-GCN

Input: 𝐗 ∈ R𝑛×𝑑 , label information of the 𝑘-th task 𝐲𝐤 and
hyperparameters 𝜆𝑘, and 𝛽𝑘, 𝑘 ∈ {1, 2, 3}.

1: Initialization: GCN parameters 𝚯𝑡
𝑘, Weight Matrices 𝐖𝑘, attention

unit parameters 𝛼𝑡𝑖𝑗 .
2: while 𝑒𝑝𝑜𝑐ℎ < 𝐸𝑃𝑂𝐶𝐻𝑆 do
3: 𝐗𝟎

𝐤 = 𝑾𝒌 ⊙𝑿;
4: for 𝑡 in range(𝑇 ) do
5: 𝐗𝐤

(𝑡𝐿+1) ←
{

𝐗𝐤
(𝑡𝐿),𝐀,𝚯𝑡

𝑘
}

by Eq. (2);
𝐗̃(𝑡𝐿+1)
𝐤 ← 𝐗𝐤

(𝑡𝐿+1) by Eq. (3)
6: end for
7: 𝐲̂𝐤 ← 𝐗̃(𝑇𝐿)

𝐤 by Eq. (5) and Eq. (6);
8: 𝐿𝑜𝑠𝑠 ←

{

𝐲𝐤, 𝐲̂𝐤
}

by Eq. (11);
9: Back-propagate 𝐿𝑜𝑠𝑠 to update model parameters ;
0: end while
utput: 𝐲̂𝐤, 𝐖𝑘.

4. Experiments

4.1. Experimental setup

Datasets description. For our experiments, we utilized raw digital im-
ges from the ADNI database and used 1.5T T1-weighted MRI data.
ollowing the procedure in paper [24], we pre-processed the images
y removing extraneous brain tissue, correcting for motion and time,
4

registering, filtering, and smoothing the images. Gray matter, white
matter, and cerebrospinal fluid were the next three tissue types into
which the images were segmented. We then warped them into the
Jacob template [25] to obtain 93 brain regions. Finally, we obtained a
93-dimensional feature vector for each subject (patient) by extracting
the gray matter volume of each region as a feature.

Our experiments involved 805 subjects, consisting of 186 AD pa-
tients, 393 Mild Cognitive Impairment (MCI) patients, and 226 normal
controls (NC). Among the 393 MCI patients, 226 were MCI converters
(MCIp) and 167 were MCI non-converters (MCIn). We also collected the
scores of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale
(ADAS-Cog) and Mini Mental State Examination (MMSE), which are
two commonly used clinical scores for AD diagnosis. We applied the
following inclusion criteria for selecting the subjects: (1)NC subjects
had MMSE scores ranging from 24 to 30 and Clinical Dementia Rating
(CDR) of 0. (2)MCI subjects had MMSE scores ranging from 24 to 30
and CDR of 0.5. (3)AD subjects had MMSE scores ranging from 20 to
26 and CDR of either 0.5 or 1.0.

We then created four binary datasets by comparing different groups
of subjects (i.e., AD-NC, AD-MCI, NC-MCI, and MCIn-MCIp). The sample
proportion of each dataset is 186:226 for AD-NC, 186:393 for AD-MCI,
226:393 for NC-MCI, and 226:167 for MCIn-MCIp, respectively. We
show the statistics information of samples in ADNI in Table 3.

Graph construction. Patients in the same class may share the same
features. Therefore, we can use the connections between patients to
construct the adjacency matrix to describe the relationships between
samples following the paper [8]. The constructed adjacency matrix is
𝐀 ∈ R𝑛×𝑛.

We use the reciprocal of the Euclidean distance to compute the sim-
ilarity between any two distinct samples. For the 𝑖th and 𝑗th samples,
we can calculate their distance as shown in the following equation:

𝑎𝑖𝑗 =
1

√

∑𝑑
𝑝=1(𝑥𝑖𝑝 − 𝑥𝑗𝑝)2

(𝑖 ≠ 𝑗), (13)

where 𝑎𝑖𝑗 represents the similarity between the 𝑖th and 𝑗th samples.
In order to convert the matrix to the standard adjacency matrix

form, we select the top 𝐾 similar samples as neighbors for each sample.
We set the weights of neighboring samples in the adjacency matrix
to 1 and the weights of the remaining samples to 0, respectively. The
mathematical expression is as follows:

𝑎𝑖𝑗 =
{

1 𝑖𝑓 𝑎𝑖𝑗 > 𝑎̃𝑖𝐾
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(14)

where 𝑎̃𝑖𝐾 is the 𝐾th largest similarity in the remaining 𝑑 − 1 samples
for the 𝑖th sample. Then we convert matrix 𝐀 in symmetric form, by
applying 𝐀 = (𝐀 + 𝐀𝑇 )∕2.

Comparison methods. We compare our proposed method with the fol-
lowing eight baseline methods: Random Forest (RF) [26], XGBoost [27]
Graph Convolutional Network (GCN) [28], Graph Attention Network

(GAT) [29], Interpretable Dynamic Graph Convolutional Networks
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Table 2
The classification and regression performance of nine methods on NC-MCI and MCIn-MCIp datasets. We bold the best result in each setting.

NC-MCI MCIn-MCIp

Method ACC SEN SPE AUC ADAS-Cog MMSE ACC SEN SPE AUC ADAS-Cog MMSE

CC RMSE CC RMSE CC RMSE CC RMSE

RF 65.5 61.8 67.1 64.5 0.371 4.068 0.431 1.672 65.8 66.1 63.9 64.8 0.347 3.586 0.386 2.178
XGBoost 65.6 62.7 66.4 65.2 0.378 4.032 0.399 1.913 66.2 67.2 64.4 64.1 0.388 3.357 0.354 2.296

GCN 65.4 62.3 69.6 65.0 0.436 3.606 0.382 2.045 66.6 69.1 62.6 66.7 0.362 3.466 0.392 2.165
GAT 66.1 63.8 69.2 66.0 0.415 3.825 0.421 1.873 65.7 69.2 62.3 65.9 0.397 3.272 0.432 1.824
IDGCN 67.2 66.0 69.0 66.5 0.452 3.526 0.436 1.727 66.9 68.2 64.5 66.9 0.402 3.225 0.461 1.748
ST 69.2 66.8 71.4 68.5 0.443 3.587 0.438 1.638 70.7 71.6 69.5 70.0 0.419 3.049 0.486 1.626
HPS 67.9 65.7 70.6 67.3 0.456 3.407 0.472 1.582 69.6 70.7 68.4 70.0 0.446 3.112 0.458 1.776
CSN 68.6 67.8 70.5 68.7 0.469 3.363 0.489 1.489 71.2 73.6 69.5 71.7 0.458 3.016 0.493 1.518
AMTI-GCN 70.1 69.3 70.8 70.6 0.477 3.264 0.498 1.400 71.9 73.2 71.1 72.5 0.485 2.872 0.522 1.415
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Table 3
Statistics information of samples in ADNI.

AD NC MCIn MCIp

Number 186 226 226 167
Age 75.2 ± 7.4 75.3 ± 5.2 75.8 ± 6.8 74.8 ± 7.1
ADAS-Cog 18.3 ± 6.0 12.1 ± 3.8 12.9 ± 3.9 8.03 ± 3.8
MMSE 23.8 ± 2.0 29.0 ± 1.2 26.6 ± 1.7 28.4 ± 1.7

(IDGCN) [8], Single-task (ST) which use subnetwork of AMTI-GCN
to perform single task without exchanging features across tasks, Hard
Parameter Sharing (HPS) [30], Cross-stitch Networks (CSN) [31].

To evaluate the interpretability of AMTI-GCN, we compare it with
hree methods that are also interpretable: RF, IDGCN and ST.

xperimental setting. We used five-fold cross-validation and conducted
he experiments 20 times for each method on the four datasets. We
hen reported the average results across the repetitions. We performed
total of three tasks in the experiments, namely patient classification,
DAS-Cog regression, and MMSE regression, and set 𝑚 = 3 as the
umber of tasks. We adopted different evaluation metrics for different
asks. For classification, we used accuracy (ACC), specificity (SPE),
ensitivity (SEN), and AUC score (AUC). For regression, we used corre-
ation coefficient (CC) and root mean squared error (RMSE). Moreover,
or AD diagnosis, we also demonstrated the interpretability of AMTI-
CN by identifying the most significant features (brain regions) for the
rediction.

mplemental details. We followed the paper recommendations to tune
he hyper-parameters for each method and obtain their optimal results.
or the proposed AMTI-GCN, we set the maximum number of epochs
o 2000, the learning rate to 0.002, the number of graph convolutional
ayers to 2, and the times of feature sharing to 2, i.e., 𝐿 = 2 in Eq. (2)
nd 𝑇 = 2 in Eq. (3). 𝛽𝑘 ∈

{

10−1, 10−2, 10−3, 10−4, 10−5
}

in Eq. (7).
e also list optimal 𝛽𝑘 on four datasets, as shown in Table 6 in the

ppendix. We conducted the experiments on 8×NVIDIA RTX 3090.

.2. Results and analysis

.2.1. Classification results
We compare the classification performance of all methods on four

atasets, as shown in Tables 1 and 2. The best results for each metric
nd dataset are in bold. The results show that: (1) Deep learning outper-
orms traditional machine learning. (2) Multi-task models often yield
etter results than analyzing a single task alone. (3) A soft parameter
haring model can obtain better results than a hard parameter sharing
odel. (4) Our proposed method, AMTI-GCN, almost outperformed the

ther eight methods on the four datasets in terms of ACC, SEN, SPE, and
UC. Specifically, AMTI-GCN outperformed the second highest method
y 0.9%, 1.8%, 0.9%, and 1.2% in terms of ACC, SEN, SPE, and AUC,
espectively.
5

.2.2. Regression results
As we can see, the prediction of MMSE and ADAS-Cog clinical

cores follows the same pattern as the classification results. The possible
easons for the above observations are as follows: (1) Deep learning
odels have an advantage over traditional machine learning in feature

xtraction. (2) Most deep learning methods do not consider the rela-
ionship between tasks and thus miss useful information from relevant
asks, which will lead to suboptimal results; (3) A hard parameter
haring mechanism can only use the underlying shared information
ndiscriminately, which lacks flexibility. Conversely, the soft parameter
haring mechanism can adjust the information sharing ratio between
asks. Hence, our method outperforms IDGCN and HPS. (4) Previous
pproaches either failed to effectively use relevant information between
asks or considered that different features are equally important to
he task. By contrast, AMTI-GCN can automatically and flexibly adjust
he ratio of information sharing among tasks based on the attention
echanism and, meanwhile, select significant features for tasks by
eight matrices.

.2.3. Interpretability
We evaluate the feature interpretability of the proposed AMTI-GCN

y comparing it with three methods with interpretation ability: RF,
DGCN, and ST. We apply the four methods to the four datasets using
ive-fold cross-validation 20 times, resulting in 100 feature selection
uns for each method. In each run, we record the 10 most significant
eatures according to the method. Then, we count the frequency of
ccurrence of each significant feature across the 100 runs and select the
0 most frequent features as the representative features of the method.
e show the indexes and importance ranks of the top 10 features for

ach method on each dataset in Table 4. We also visualize the brain
egions selected by Random Forests, IDGCN, ST, and AMTI-GCN on the
D-NC dataset, as shown in Fig. 4 in Appendix.

According to the paper [32], the hippocampal formation (30,69),
mygdala (76,83), precentral gyrus (5,55), and parahippocampal gyrus
17,78) are the four brain areas most frequently linked to AD. We
ote that all four methods can choose all or most of these regions as
ignificant features. However, the rankings of the regions are differ-
nt according to the four methods. We utilize the average precision
AP) [33] as a metric to evaluate the ranking performance of the feature
nterpretability.

We consider hippocampal formation (30, 69), amgydata (76, 83),
recentral gyrus (5, 55), and parahippocampal gyrus (17, 78) as im-
ortant features. We compute the AP for each sequence in Fig. 3, and
eport the results of the four methods along with their sequences. We
alculate the AP score for one classification metric and two regression
etrics. We observe that AMTI-GCN has a higher AP score than the

ther three methods in both classification and regression tasks. We
lso notice that AMTI-GCN can select the most important features
hippocampal formation (30, 69) and amygdala (76, 83)). These out-
omes demonstrate the potency of our approach, which outperforms
he competition in terms of ranking performance.
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Table 4
The indexes of top 10 important brain regions on AD-NC, AD-MCI, NC-MCI and MCIn-MCIp. The bold numbers represent the number of the most relevant brain regions for AD
diagnosis, corresponding to four different methods.

Method AD-NC AD-MCI NC-MCI MCIn-MCIp

Classification

RF 30,27,3,11,83,69,8,52,84,80 8,30,83,5,11,85,69,80,47,4 69,3,8,32,76,85,11,83,92,46 5,36,33,83,1,30,46,59,55,17
IDGCN 21,27,32,49,69,60,30,58,41,83 24,70,52,69,84,20,22,23,12,11 5,36,33,83,1,30,46,55,39,17 21,69,30,22,64,78,62,70,52,48
ST 30,64,35,41,21,75,91,17,63,5 28,5,89,69,30,43,64,51,54,76 40,10,5,25,17,83,87,55,84,27 69,5,75,87,11,10,63,2,62,83
AMTI-GCN 30,21,69,83,78,82,17,64,62,5 30,78,22,83,5,53,33,17,38,69 30,17,78,55,67,76,74,47,5,70 83,30,74,49,1717,65,48,61,2,69

ADAS-Cog

RF 27,46,83,30,76,84,80,48,62,3 83,27,20,24,8,1,84,36,44,30 27,83,30,92,21,76,3,81,78,55 58,36,22,30,38,69,20,17,47,49
IDGCN 69,47,76,21,30,82,55,72,57,8 68,23,5,79,30,56,38,53,70,84 9,23,21,5,78,63,50,82,67,46 63,21,69,17,5,33,30,65,52,78
ST 69,59,55,86,68,30,76,62,18,91 84,14,17,48,11,55,74,30,28,4 40,55,26,39,69,17,48,50,83,76 43,56,83,5,76,69,48,76,79,84
AMTI-GCN 69,41,76,27,83,30,55,78,17,82 28,55,60,76,30,17,78,26,38,5 83,5,41,69,47,55,44,78,22,63 30,74,83,55,17,63,47,48,60,82

MMSE

RF 27,83,46,30,84,80,62,76,89,3 83,8,11,36,67,5,15,46,39,69 27,87,82,30,48,64,5,68,49,32 36,83,75,47,17,57,21,30,55,78
IDGCN 69,17,27,82,5,81,60,30,75,51 68,79,55,23,1,17,69,30,82,4 9,78,92,55,63,93,82,77,17,14 63,80,61,20,92,5,76,33,17,78
ST 69,30,19,78,47,83,76,55,9,20 84,65,49,17,78,93,50,33,80,76 15,40,30,37,55,38,17,20,83,76 83,60,90,82,67,78,55,77,30,74
AMTI-GCN 69,27,76,83,78,5,41,30,17,47 30,28,23,5,17,76,83,29,68,92 30,41,55,63,76,93,69,10,78,17 74,30,76,65,26,78,83,47,21,87
Fig. 3. AP scores of RF, IDGCN, ST, AMTI-GCN on four datasets.
Table 5
Ablation study results on four datasets. We bold the best result in each dataset.
Module AD-NC AD-MCI NC-MCI MCIn-MCIP

Interpretation Sharing ACC RMSE ACC RMSE ACC RMSE ACC RMSE

ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE ADAS-Cog MMSE

✗ ✗ 82.9 5.019 2.586 68.5 4.762 2.649 67.6 3.626 2.610 68.8 3.157 2.648
✓ ✗ 84.8 4.857 2.276 71.2 4.532 2.468 68.2 3.587 1.638 70.7 3.094 1.626
✗ ✓ 85.1 4.786 2.059 72.1 4.287 2.146 69.6 3.475 1.602 70.0 2.978 1.582
✓ ✓ 86.2 4.513 1.889 74.2 4.015 1.886 70.1 3.264 1.400 71.9 2.872 1.415
4.3. Ablation study

To demonstrate the effectiveness of the interpretation module and
the feature sharing module, we conducted the following ablation ex-
periments. We take the single-task subnet of AMTI-GCN without the
interpretation module as the baseline, and add the interpretation mod-
ule and the feature sharing module on the baseline to prove that the
two modules are effective respectively. Finally, the results are then
compared with AMTI-GCN. We experimented on the four previous
datasets. We use classification accuracy (ACC) and root mean square
error (RMSE) as classification and regression metrics, respectively. We
show the results in Table 5. In the first two columns, Interpretation
represents the interpretation module, and Sharing represents the feature
sharing module.

We can see from Table 5 that the performance of the model im-
proves in both classification and regression tasks after adding the
interpretation module to the baseline, which indicates that the inter-
pretation module can reduce the redundant features and thus improve
the performance of classification and regression. Meanwhile, the clas-
sification and regression performance can be improved by adding the
6

feature sharing module to the baseline. This indicates that the feature
sharing module can exploit the correlation between tasks to improve
the performance of each task. Finally, the performance of the model is
further improved by adding two modules at the same time, indicating
that the two modules can interact with each other to improve the
overall performance of the model on each task.

5. Conclusion

The proposed AMTI-GCN shows superior performance and provides
interpretability in both classification and regression tasks, as evidenced
by the experimental results and the comparison with existing methods.
In our work, we utilized a multi-task model with MRI as an input
to predict the result of MRI, ADAS-Cog, and MMSE scores. However,
we did not thoroughly investigate and analyze potential relationships
between ADAS-Cog and MMSE scores and other factors, e.g., ADAS-
Cog and MMSE cognitive scores may differ according to the level of
education. In our future research, we plan to expand our analysis by
considering additional factors, including education levels and mental

health status, when predicting these two indicators.



Pattern Recognition Letters 180 (2024) 1–8S. Jiang et al.
Fig. 4. Top 10 brain regions selected on the AD-NC dataset by RF, IDGCN, ST and
AMTI-GCN on three tasks.

Fig. A.1. The names of the selected brain regions in this work.
7

Table 6
Optimal hyperparameters on four binary datasets.

Datasets 𝛽1 𝛽2 𝛽3 Datasets 𝛽1 𝛽2 𝛽3
AD-NC 10−1 10−5 10−4 AD-MCI 10−1 10−5 10−2

NC-MCI 10−2 10−4 10−3 MCIn-MCIp 10−2 10−4 10−4
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